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Abstract. Our previous calculations of the sea- and valence-quark mass dependence of the pseudoscalar
meson masses and decay constants is repeated on a 163 ·32 lattice, which allows for a better determination
of the quantities in question. The conclusions are similar as before on the 164 lattice [1]. The two light
dynamical quark flavours we simulate have masses in the range ms/4 < mu,d < 2ms/3. The sea quark mass
dependence of fπ and m2

π/mq is well described by the next-to-leading order (NLO) chiral perturbation
theory (ChPT) formulas and clearly shows the presence of chiral logarithms. The valence quark mass
dependence requires the presence of NNLO contributions in partially quenched ChPT (PQChPT)—in
addition to the NLO terms. The O(a) lattice artifacts in these quantities turn out to be small.

1 Introduction

In Quantum Chromodynamics (QCD) – the theory of
strong interactions – there are two very light quarks and
one moderately light quark (u, d and s, respectively). The
strong interaction dynamics at low energies can be for-
mulated by an effective chiral Lagrangian, which incorpo-
rates the symmetry constraints following from the sponta-
neously broken chiral symmetry of the light quarks. In this
low-energy effective theory, the interactions are described
by a simultaneous expansion in powers of momenta and
light quark masses [2,3]. The coefficients of the interac-
tion terms in the effective chiral Lagrangian – the Gasser-
Leutwyler constants – are free parameters, which can be
constrained by experimental data and also calculated from
the underlying basic QCD Lagrangian in the framework
of the nonperturbative lattice regularization.

In numerical lattice QCD simulations, the quark
masses are free parameters. Changing these parameters
gives an excellent opportunity to precisely determine the
Gasser-Leutwyler constants. In fact, chiral perturbation
theory (ChPT) based on the chiral Lagrangian can be ex-
tended by changing the valence quark masses in quark
propagators independently from the sea quark masses in
virtual quark loops. This leads to partially quenched chiral
perturbation theory (PQChPT) [4].

The aim of numerical simulations in QCD is to reach
the regime of light quark masses where next-to-leading
order (NLO) chiral perturbation theory gives a good ap-
proximation. In previous papers [5,6,1], our collabora-
tion started a series of simulations with two equal-mass

light quarks (qq) with the goal of extracting the values of
the Gasser-Leutwyler constants conventionally denoted by
Lk, (k = 1, 2, . . .). Later on, it will be possible to extend
these calculations by also including the s-quark (qq+q).

In our previous paper [1], we started some larger scale
simulations on a 164 lattice at the gauge coupling β = 5.1,
which corresponds to a lattice spacing of a � 0.2 fm. Be-
cause it became clear that interesting results can be ob-
tained already at this relatively rough discretization scale,
we decided to repeat and extend these simulations on a
163 · 32 lattice, which is better suited for extracting quan-
tities like the pseudoscalar (pion) mass (mπ) and decay
constant (fπ). Our work profited from the valuable ex-
perience of previous simulations by other collaborations
[7–9].

Because the present work is on the same topics as [1],
we shall often only refer to it without repeating its full
content. In general, we use the conventions and notations
of [1,6,5]. Nevertheless, we also try to make the present
paper easily understandable for the reader and therefore
repeat the main definitions and relations. In the next sec-
tion, we deal with the sea quark mass dependence of fπ

and mπ. In Sect. 3, the valence quark mass dependence
is considered and the question of the magnitude of lead-
ing lattice artifacts is investigated. Section 4 is a short
summary of our experience with the Monte Carlo updat-
ing algorithm. The last section contains the summary and
discussion.
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2 Sea quark mass dependence

We performed Monte Carlo simulations with Ns = 2 de-
generate sea quarks on a 163 · 32 lattice at gauge cou-
pling β = 5.1 and four values of the hopping parameter
κ: κ0 = 0.176, κ1 = 0.1765, κ2 = 0.1768 and κ3 = 0.177.
Three of these points have also been simulated previously
on the 164 lattice in [1]. The point at κ2 = 0.1768 is new.
We collected 950–1000 gauge configurations per point,
which are typically separated by 10 update cycles con-
sisting of boson-field and gauge-field updates and noisy
correction steps. (Some observations about the algorithm
will be summarized in Sect. 4.)

A collection of the values of some basic quantities
in these simulation points is given in Table 1: the Som-
mer scale-parameter in lattice units, r0/a; the pion mass
in lattice units, amπ; the quark mass parameter, Mr =
(r0mπ)2; the bare PCAC quark mass Zqamq, including
the multiplicative renormalization factor, Zq = ZP /ZA;
the ratio of the PCAC quark masses σi with respect to
the reference sea quark mass at κ = κ0 and the pion de-
cay constant in lattice units, afπ divided by the renormal-
ization factor ZA. (The normalization of the pion decay
constant is such that the physical value is fπ � 93 MeV.)

Comparing Table 1 to the corresponding one (Table 3)
in [1], one can see that these quantities extracted on the
163 · 32 lattice differ considerably from those extracted
on the 164 lattice. The change of r0/a is about 2–5%.
The difference in amπ increases from 3% at κ0 to about
16% at κ3, whereas Zqamq differs at κ0 by 5% and at
κ3 already by about 28%. However, as we shall see later
on, considering ratios of the pion mass-square and of the
pion decay constant as a function of the ratios of PCAC
quark masses (denoted by σ for sea quark masses and ξ for
valence quark masses), it turns out that almost all changes
between the 164 and 163 · 32 lattices cancel.

In Table 1, the bare quark mass obtained from the
PCAC relation is shown: mq ≡ mPCAC

q . (For details
of its numerical determination, see Sect. 3.1.1 in [5].)
Another possibility to define the quark mass is to take
amren ≡ µren ≡ Zm(µ0 − µcr), where µ0 = 1/(2κ) − 4
is the bare quark mass in the Wilson–fermion action,
µcr is its critical value corresponding to zero quark mass
and ZR is an appropriate multiplicative renormalization
factor. The values of µ0 corresponding to κ0, ..., κ3 are
µ0(0) = −1.1590909..., µ0(1) = −1.1671388..., µ0(2) =
−1.1719457..., µ0(3) = −1.1751412..., respectively. Com-

paring the values of Zqamq or σi in Table 1 to the values
µ0(i), one can see that the relation between them is highly
nonlinear. This implies the same also for the relation be-
tween the (ratios of) mPCAC

q and mren. The nonlinear
terms in this relation are lattice artifacts, which have to
vanish in the continuum limit, but they are large at our
lattice spacings.

A consequence of the strongly nonlinear relation be-
tween σ and µ0 is that the determination of µcr (or κcr)
has large uncertainty. In fact, with our four points only,
we could not find a convincing extrapolation of σ to zero.
A crude quadratic extrapolation gives µcr = −1.180(4) or
κcr = 0.1773(2). The uncertainty in the critical point im-
plies an uncertainty in the extrapolation of physical quan-
tities, too, which is necessary in a quark mass-independent
renormalization scheme. In case of the lattice spacing,
which can be obtained from the extrapolation of r0/a to
the critical point, Table 1 shows that the values of r0/a
increase between κ0 and κ2, but between κ2 and κ3, they
are within error constants. Therefore, we take this con-
stant value as the extrapolated one: [r0/a]cr = 2.57(5).
This gives, with r0 ≡ 0.5 fm, for the quark mass indepen-
dent lattice spacing a = 0.195(4) fm.

In the ChPT formulas, the quark mass can be repre-
sented by the dimensionless quantity

χ ≡ 2B0mq

f2
0

, (1)

where B0 is a conventional parameter with dimension
mass and f0 is the value of the pion decay constant at
zero quark mass. (Its normalization here is such that the
physical value is f0 � 93 MeV.) In what follows, we shall
identify the quark mass mq in χ with the PCAC quark
mass mPCAC

q . According to the previous discussion, this
is a nontrivial choice because the lattice artifacts in (ra-
tios of) the quark mass are rather different for amPCAC

q

than, for instance, for amren.
The sea quark mass dependence of the ratio of the pion

decay constant in NLO of ChPT is:

RfSS ≡ fSS

fRR
= 1 + 4(σ − 1)χR(NsLR4 + LR5)

−NsχR

32π2 σ log σ + O(χ2
R). (2)

Here fSS is the pion decay constant of a pion con-
sisting of two sea quarks with mass χS and fRR is its

Table 1. The values of some basic quantities in our simulation points.
Statistical errors in last digits are given in parentheses

κ κ0 κ1 κ2 κ3

r0/a 2.229(63) 2.212(44) 2.621(46) 2.528(51)
amπ 0.6542(10) 0.5793(17) 0.3919(46) 0.3657(24)
Mr = (r0mπ)2 2.13(12) 1.642(72) 1.055(36) 0.855(34)
Zqamq 0.07092(27) 0.05571(30) 0.02566(27) 0.02208(21)
σi = mqi/mq0 1.0 0.7856(56) 0.3618(44) 0.3113(31)
Z−1

A afπ 0.2819(15) 0.2590(14) 0.2008(17) 0.1936(16)
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value at some reference quark mass χR. Ns is the num-
ber of mass-degenerate sea quarks (actually Ns = 2),
LRk (k = 4, 5, . . .) are Gasser-Leutwyler constants at the
scale µ = f0

√
χR and the ratio of sea quark masses to the

reference quark mass is

σ ≡ χS

χR
. (3)

The analogous formula for the pion mass squares is:

RnSS ≡ m2
SS

σm2
RR

= 1 + 8(σ − 1)χR ·
·(2NsLR6 + 2LR8 − NsLR4 − LR5)

+
χR

16π2Ns
σ log σ + O(χ2

R). (4)

Note that instead of the scale-dependent combinations (at
Ns = 2),

LR45 ≡ 2LR4 + LR5 ,

LR6845 ≡ 4LR6 + 2LR8 − 2LR4 − LR5, (5)

one can also use the universal low-energy scales Λ3,4 de-
fined by [10].

Λ3 = 4πf0 exp(−α6845) ,

α6845 = 128π2LR6845 − 1
2

log
χR

16π2

Λ4 = 4πf0 exp(α45/4) ,

α45 = 128π2LR45 + 2 log
χR

16π2 . (6)

The free parameters in RfSS and RnSS are χR, χRLR45
and χRLR6845. With the small number of points we have,
the linear fit with these parameters gives a good chi-square
but relatively large errors: χ2 = 0.8 and

χR = 30.8(9.4),
χRLR45 = 0.1398(86),

χRLR6845 = −0.0078(22). (7)

This corresponds to

LR45 = 4.5(1.1) · 10−3,
Λ4

f0
= 23.3(8.2),

LR6845 = −2.54(21) · 10−4,
Λ3

f0
= 7.64(14). (8)

Consistent results with smaller errors can be obtained
if one takes the value of χR = 35.8(3.3) from the fit of the
valence quark mass dependences (see next section) and
performs two linear fits with the parameters χRLR45 and
χRLR6845, respectively. The resulting parameters are

χRLR45 = 0.1443(15),

LR45 = 4.03(37) · 10−3,
Λ4

f0
= 21.4(1.5),

χRLR6845 = −0.00896(86),

LR6845 = −2.50(34) · 10−4,
Λ3

f0
= 8.21(27) (9)
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Fig. 1. Sea quark mass dependence of the pion decay constant.
The straight dashed line connects the first two points

and the fits are shown in Figs. 1 and 2.
As these figures show, both RfSS and RnSS can be

well fitted with the NLO ChPT formula. The fit parame-
ters are within the expected range. For instance, the value
of χR is rather close to the tree-level estimate χestimate

R ≈
Mr/(r0f0)2 � 40.3. (Here we used r0f0 � 0.23.) The pres-
ence of a chiral logarithm, which causes the curvature, is
clearly displayed in Fig. 1, where a straight line connect-
ing the first two points is also shown. In RnSS , the mea-
sured points are consistent with the presence of a chiral
logarithm but the relative errors are large because all the
values including the ChPT fit are very close to 1. This
implies that the deviation from the tree-level behaviour
m2

SS ∝ χS is rather small. The results for the parameters
in (9) are close to the ones reported in [1]: the values for
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Fig. 2. Sea quark mass dependence of the pion mass-squared
divided by the quark mass
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Λ4/f0 practically coincide and the value of Λ3/f0 is only
slightly higher now.

The extrapolated values of RfSS and RnSS at zero
quark mass are, respectively:

Rf0 = 0.4228(60), Rn0 = 1.0717(69). (10)

The value of Rf0 together with Z−1
A afπ from Table 1 and

r0 = 0.5 fm imply, for the pion decay constant, at zero
quark mass (f0)

Z−1
A f0 = 121(5) MeV. (11)

This result for Ns = 2 light quarks compares well with
the phenomenological value f0 = 93 MeV if, as expected,
ZA = O(1).

3 Valence quark mass dependence

We consider, for fixed sea quark mass χS , the valence
quark mass dependence of fπ and m2

π as a function of
the quark mass ratio

ξ ≡ χV

χS
. (12)

In our numerical data, we determined the pseudoscalar
mass and decay constant in relatively wide ranges of the
valence quark mass ratios, typically 1

2 ≤ ξ ≤ 2. At the
smaller quark masses (κ = κ2,3), however, for ξ < 1 ex-
ceptional gauge configurations appear, which blow up the
statistical errors and clearly influence the mean values
themselves. Therefore, in most cases, we restrict our fits
to valence quark masses larger than the sea quark mass
(ξ > 1).

In the partially quenched situation, several types of
ratios can be constructed because the pseudoscalar meson
can be the bound state of two valence quarks (V V ) and
also a valence quark and a sea quark (V S). The PQChPT
formulas for the ratios of decay constants are:

RfV V ≡ fV V

fSS
= 1 + 4(ξ − 1)χSLS5

−NsχS

64π2 (1 + ξ) log
1 + ξ

2
+ DfV V χ2

S(ξ − 1) + QfV V χ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S) (13)

and

RfV S ≡ fV S

fSS
= 1 + 2(ξ − 1)χSLS5

+
χS

64Nsπ2 (ξ − 1 − log ξ)

− NsχS

128π2 (1 + ξ) log
1 + ξ

2

+
1
2
DfV V χ2

S(ξ − 1) + QfV Sχ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S). (14)

The analogous formulas for the valence quark mass depen-
dence of the (squared) pseudoscalar meson masses are:

RnV V ≡ m2
V V

ξm2
SS

= 1 + 8(ξ − 1)χS(2LS8 − LS5)

+
χS

16Nsπ2 [ξ − 1 + (2ξ − 1) log ξ]

+ DnV V χ2
S(ξ − 1) + QnV V χ2

S(ξ − 1)2

+O(χ2
S log ξ, χ3

S) (15)

and

RnV S ≡ 2m2
V S

(ξ + 1)m2
SS

= 1 + 4(ξ − 1)χS(2LS8 − LS5)

+
χS

16Nsπ2 ξ log ξ

+
1
2
DnV V χ2

S(ξ − 1) + QnV Sχ2
S(ξ − 1)2

+ O(χ2
S log ξ, χ3

S). (16)

In these formulas the Gasser-Leutwyler coefficients, LSk

(k = 4, 5, . . .), are defined at the scale f0
√

χS and, in ad-
dition to the NLO terms, also the tree-graph (i.e. counter-
term) contributions of the NNLO are included. Their gen-
eral form is taken from [11] and is discussed in more de-
tail in Sect. 2.1 of [1]. The left-out terms of NNLO, which
come from two-loop integrals, are generically denoted here
by O(χ2

S log ξ).
In addition to the single ratios, RfV V , RfV S , RnV V

and RnV S , it is useful to consider the so-called double
ratios, which do not depend on any of the NLO coefficients
LSk. The PQChPT formulas for the double ratios are:

RRf ≡ f2
V S

fV V fSS
= 1 +

χS

32Nsπ2 (ξ − 1 − log ξ)

+ Qfdχ
2
S(ξ − 1)2 + O(χ2

S log ξ, χ3
S)
(17)

and

RRn ≡ 4ξm4
V S

(ξ + 1)2m2
V V m2

SS

= 1 − χS

16Nsπ2 (ξ − 1 − log ξ)

+ Qndχ
2
S(ξ − 1)2 + O(χ2

S log ξ, χ3
S).

(18)

In the PQChPT formulas (13)-(18), there are alto-
gether 11 parameters. Three of them appear at NLO,
namely with Ns = 2,

χR , χRLR5 , χRLR85 ≡ χR(2LR8 − LR5), (19)

and the rest in NNLO:

χ2
RDfV V,nV V , χ2

RQfV V,fV S,fd,nV V,nV S,nd. (20)
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At the smallest quark mass, fits with the NLO formulas
are reasonable but for the larger quark masses the NNLO
contributions are required unless the fits are restricted to
a small range around ξ = 1.

An acceptable global fit with 11 parameters can be
achieved if the valence quark mass dependence at all four
sea quark masses is simultaneously considered. In this
case, one has to choose a reference sea quark mass, χR,
and take into account the relation between the NLO pa-
rameters

LSk = LRk − ck log
χS

χR
, (21)

where the relevant constants are:

c5 =
1

128π2 , c85 ≡ 2c8 − c5 = − 1
128π2 . (22)

Fitting all six valence quark mass dependences,
(RfV V , RfV S , RRf , RnV V , RnV S , RRn), there are rea-
sonably good 11 parameter (linear) fits with χ2 � 200 �
degrees of freedom. A typical set of the resulting fit pa-
rameters is shown in Table 2.

Comparing Table 2 with the corresponding one (Ta-
ble 4) in [1], one can see that most values are, within
statistical errors, the same. This is also true for the NLO

Table 2. Values of best fit parameters for the valence quark
mass dependence. Quantities directly used in the fitting pro-
cedure are in boldface

χR 35.8(3.3)
χRLR5 0.1003(76) LR5 2.80(39) · 10−3

χRLR85 −0.0256(12) LR85 −0.714(65) · 10−3

χ2
RDfV V −0.109(42) DfV V −8.5(4.4) · 10−5

χ2
RQfV V −0.014(29) QfV V −1.1(2.3) · 10−5

χ2
RQfV S −0.0177(94) QfV S −1.39(81) · 10−5

χ2
RQfd −0.0180(31) Qfd −1.41(13) · 10−5

χ2
RDnV V −0.134(21) DnV V −10.46(93) · 10−5

χ2
RQnV V −0.087(13) QnV V −6.77(30) · 10−5

χ2
RQnV S −0.0394(44) QnV S −3.07(24) · 10−5

χ2
RQnd 0.0077(48) Qnd 0.60(26) · 10−5

parameters defined at the scale 4πf0, which are now

α5 ≡ 128π2LR5 + log
χR

16π2 = 2.06(42),

α85 ≡ 2α8 − α5 ≡ 128π2LR85 − log
χR

16π2 = 0.583(45).

(23)
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The value of α5 is practically the same as in Table 5 of
[1], whereas α85 is slightly smaller now.

The tree-graph NNLO contributions play an important
role in the global fits of the valence quark dependences,
especially at the two larger sea quark masses (κ = κ0 and
κ = κ1). At the two smaller sea quark masses, NNLO is
substantially less important. This is illustrated in Fig. 3,
where the 11 parameter fit for RfV V is shown together
with the NLO contributions alone.

3.1 O(a) terms

The fits above have been performed with the continuum
formulas – without O(a) or any other lattice artifacts.
The fits are reasonably good and the resulting parameters
are quite similar to those obtained in [1], where the O(a)
terms have been taken into account in the (PQ)ChPT La-
grangian according to [12]. It has been observed already
in [1] that the parameter in the chiral Lagrangian charac-
terizing the magnitude of O(a) effects,

ρ ≡ 2W0acSW

f2
0

, (24)

is rather small compared with the quark mass parameter
χ in (1). Fitting the ratio ηS ≡ ρS/χS separately for the
individual sea quark mass values, we obtained increasing
values for increasing sea quark masses: 0.02 ≤ ηS ≤ 0.07.

The parameter ρ should be independent of the quark
mass because the quark masses are the other expansion
parameters in the chiral Lagrangian. This means that a
quark mass dependent ρS incorporates some higher or-
der effects proportional to some power of amq. (For in-
stance, a linearly increasing value of ηS corresponds to
ρS ∝ (amq)2.) Because the observed values of ρ are small
anyway, it is interesting to consider the behaviour of the
chi-square as a function of ρ if the linear fits are performed

for fixed ρ . Because of the presence of another new pa-
rameter describing O(a) effects in the chiral Lagrangian,
the linear fit has 12 parameters for ρ �= 0 (instead of 11
for ρ = 0). As is shown by Fig. 4, the χ2 of the fit has
a minimum near ρ = η = 0 and becomes extremely large
already at |η| � 0.1. where the absolute value of ρ is 10%
of the value of the reference quark mass parameter χR.
Another way to investigate the importance of O(a) effects
in our data is to consider the following combination of
double ratios:

RRn + 2 RRf − 3 = (Qnd + 2Qfd)χ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S). (25)

As this formula shows, this combination vanishes in next-
to-leading order and only NNLO and higher orders con-
tribute to it. On the lattice, there could also be O(a) con-
tributions, which can be parametrized as

RRn + 2 RRf − 3 = 16ρ LS4W6
(ξ − 1)2

ξ(ξ + 1)
− ρ

(ξ − 1)2

χSξ(ξ + 1)

+ ρ
[2(1 − ξ2) + log ξ + 3ξ2 log ξ]

32π2ξ(ξ + 1)

+ρ
(ξ − 1 − ξ log ξ)

32π2ξ

+ O(ρ2, χ2). (26)

Here only the linear piece of the ηS = ρ/χS-dependence
is kept because ηS is small. LS4W6 ≡ LS4 − WS6 is a
new parameter appearing in the O(a) terms of the chiral
Lagrangian [12].

The linear fits with χ2
SQn2f ≡ χ2

S(Qnd +2Qfd) in (25)
and with ρ in (26), respectively, are shown in case of the
smallest sea quark mass (κ = κ3) by Fig. 5. As this figure
shows, the NNLO fit with χ2

SQn2f is better (χ2 = 1.3)
than the one with the leading O(a) term proportional to ρ
(χ2 = 7.2). For simplicity, the parameters χS = 11.7 and
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Fig. 5. Comparing the NNLO fit (full line) with the leading
O(a) fit (dashed line) for (RRn + 2 RRf − 3) at κ = κ3
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LS4W6 = 0.001 are fixed in this latter case, but taking
other values does not change the qualitative picture.

At the larger sea quark mass values, the fits with the
leading O(a) terms behave similarly to Fig. 5. This sup-
ports the fact that the O(a) terms are not important in
our numerical data. As shown by Fig. 4, good fits can only
be obtained at rather small values of η = ρ/χ. In contrast,
the NNLO contributions are very important, especially at
our larger sea quark masses.

4 Studies of the updating algorithm

The numerical simulations have been performed by the
two-step multi-boson (TSMB) algorithm [13]. This dy-
namical fermion update algorithm is based on the multi-
boson representation of the fermion determinant [14], and
in its present form, it incorporates several modern ideas
of fermionic updating: the global correction step in the
update [15], the final reweighting correction [16] and the
determinant breakup [17].

Our error analysis is based on measuring the autocor-
relations of the quantities in question [18,19], therefore,
we can estimate the computation cost based on the inte-
grated autocorrelations τint. In our previous papers [5,20,
21], we proposed an approximate formula for the cost,

Cτint � F (amq)−2 Ω, (27)

where amq is the quark mass in lattice units and Ω the
number of lattice points. The overall factor F depends on
the quantity under investigation. If we count the cost in
terms of the number of floating-point operations necessary
to perform an update sequence with length τint, then the
present simulations on 163 · 32 lattice are consistent with

Fplaquette � 7 · 106, Fmπ
� 106, Ffπ

< 4 · 105.
(28)

In case of fπ, we only have an upper limit on τint because
the gauge configurations stored for the measurements were
statistically independent. These numbers are somewhat
smaller than our previous estimates in [5,20,21], which is
due to a better tuning of algorithmic parameters. In par-
ticular, these simulations were done with a determinant
breakup Nb = 4, which means that the fermion determi-
nant of the two degenerate flavours (Nf = 2) were repro-
duced by 4⊗ (Nf = 1

2 ) flavours. Another important point
is the frequent call of the global heatbath update of the
multiboson fields, which every time gives a statistically
independent boson configuration.

If we take the plaquette expectation value as the worst
case, then at the present quark masses and lattice spacing,
this cost estimate is similar to previous estimates (see, for
instance, the formula of A. Ukawa [22]), but considering
the more interesting cases of mπ or fπ, there is a sub-
stantial improvement by an order of magnitude or more.
In addition, toward large volumes, smaller quark masses
and/or smaller lattice spacings, the scaling of the cost es-
timate in (27) is better: for fixed lattice spacing, the cost
increases as m−2

q Ω and decreasing the lattice spacing and

keeping the physical parameters fixed, the cost behaves
as a−6. This has to be compared with the estimated be-
haviour in [22], m−3

q Ω5/4 and a−7, respectively.

5 Summary

The quark mass dependence of the pseudoscalar mass and
decay constant in our numerical data can be well fitted
with the continuum (PQ)ChPT formulas. It has been al-
ready observed on the 164 lattice in [1] that the O(a) lat-
tice artifacts at our gauge coupling β = 5.1, corresponding
to a lattice spacing a � 0.2 fm, are small and one can ob-
tain reasonable fits by omitting them. This conclusion is
strengthened by the new 163 · 32 data and, therefore, here
we based our estimates of the chiral Lagrangian parame-
ters on fits with the continuum formulas.

The use of the ratios of the PCAC quark mass as the
variable in comparing the simulation data to chiral per-
turbation theory is essential. Taking other quark mass def-
initions, for instance µren ≡ Zm(µ0 − µcr), would be the
source of large lattice artifacts at our lattice spacing.

The sea quark mass dependence of fπ and m2
π/mq can

be well described in our quark mass range 0.855 ≤ Mr ≤
2.13, which roughly corresponds to 1

4ms ≤ mq ≤ 2
3ms,

by the NLO ChPT formulas. The obtained estimates of
the relevant Gasser-Leutwyler constants are, according to
Sect. 2,

Λ3

f0
= 8.21(27),

Λ4

f0
= 21.4(1.5). (29)

The functional dependence of the ratio of fπ as a function
of the ratio of quark masses clearly shows the presence of
chiral logarithms (see Fig. 1). This observation is in agree-
ment with the results in a recent paper of the UKQCD
Collaboration [23], which came out during the writing of
this paper.

In the valence quark mass dependence of the same
quantities, in addition to the NLO terms, the higher order
NNLO contributions appear to be important – especially
at our two larger sea quark masses. But, as shown by
Fig. 3, the importance of the NNLO terms is considerably
reduced at the two lighter sea quark masses. Our best es-
timates for the relevant Gasser-Leutwyler constants at the
scale 4πf0 are, according to (23).

α5 = 2.06(42), 2α8 − α5 = 0.583(45). (30)

The errors quoted in (29) and (30) are only the statis-
tical ones. In order to decrease the systematic errors, sim-
ulations at still smaller sea quark masses would be useful.
Because our lattice volume is relatively large (L � 3 fm),
finite volume effects can be expected to be small (see [24,
25]). For the moment, we have no direct handle on the
magnitude of the remaining nonzero lattice spacing effects.
These should be determined by performing simulations at
smaller lattice spacings.
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24. G. Colangelo, S. Dürr, Eur. Phys. J. C 33, 543 (2004);

hep-lat/0311023
25. D. Becirevic, G. Villadoro, Phys. Rev. D69, 054010

(2004); hep-lat/0311028


